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We consider the problems arising in the application of algorithms of fractal-dimension measurements
to data obtained from numerical integration of equations describing Rayleigh-Bénard convection. It is
shown that in some cases the delay reconstruction of an attractor from a scalar time series requires much
more data than does processing in the original phase space. If the length of the time series is too small,
then the result resembles that for the case of large noise.
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I. INTRODUCTION

The invention of the method of delay reconstruction of
strange attractors from scalar time series provided a rich
perspective for new techniques of data processing. For
the first time, we believe, this method was published in a
widely circulated journal in 1980 by Packard et al., and
the word “theorem” was associated with it in the famous
paper by Takens in 1981 [1]. Since then the application
of the methods of dynamical systems theory (measure-
ment of fractal dimensions, Lyapunov exponents, etc.) be-
came a standard procedure of data processing such as
spectral or correlation analysis.

An application of the reconstruction technique is as
follows. Let there be a series of values of some observ-
able (velocity, temperature, etc.) measured in sequential
moments of time t; =iAt: x;=x(t;),i=1,...,N. Then it
is supposed that (1) the series x (¢) is a “projection” of a
trajectory x(¢) of a certain n-dimensional dynamical
system with continuous [x=F(x)] or discrete
[x(z +1)=F(x(2))] time, x (¢£)=®(x(2)); (2) this trajecto-
ry belongs to the system’s attractor A and is dense on it,
that is, eventually (for 1 — ) it will pass arbitrary close
to any given point of the attractor; and (3) the total obser-
vation time T, =NAt and the number of data points N
are large enough for a trajectory to display all important
details of the attractor studied. The Takens theorem also
requires that attractor must belong to a smooth d-
dimensional manifold. Then one can obtain the m-
dimensional reconstruction A ; of A as a set of vectors
z(t) in R” for m =22d +1:

z(1)=A,, (x(1))

={x(),x(t+7),...,x(t+(m —1)71)} . (1)

The theorem guarantees that this reconstruction defines
the mapping A,, A —A g, which is smooth and inverti-
ble on A ; for almost all 7. Hence, at least for very large
N, we obtain a set of z vectors that may be processed in-
stead of the original (and often unknown) x vectors.

But in practice N is always finite, and the parameters
of reconstruction turn out to be vital: for a good recon-
struction one can obtain more information than from a
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bad one using the same amount of data. We encountered
this problem when analyzing the numerical data from
modeling of convection in a fluid layer: the results were
very sensitive to the choice of m and 7. We decided to in-
vestigate this problem on a quantitative basis, and it
proved that the delay reconstruction may introduce vari-
ous geometrical distortions; to overcome them and to
“reach” the structure of attractor itself one needs N
larger than in the case of processing x vectors. More-
over, in some cases it proves that there may be no delay
reconstruction for which Ay is close to A. In such
cases, processing in X space may be preferential com-
pared to the use of the reconstruction (1). It also proves
(at least approximately) that the most important parame-
ter is the window length covered by the z vector, we shall
denote it by w =(m —1)7.

Below we shall characterize reconstructions in terms of
measurement of one of the fractal dimensions—the
correlation exponent v. First, because it is natural to use
a geometrical characteristic to describe geometrical dis-
tortions. Second, it was during the measurement of v
that this problem became important for us. But certain-
ly, all basic conclusions are also valid for measurements
of Lyapunov exponents, etc., because other methods use
the same delay reconstructions.

II. FRACTAL-DIMENSION MEASUREMENTS

It is well known now that when the behavior of a
dynamical system is chaotic, its attractor turns out to be
a fractal set of noninteger dimension. Many different di-
mensions have been proposed to describe them, their
values typically being close to each other and characteriz-
ing different details of the whole complex structure [2].
Numerically, the set of generalized dimensions D, can be
measured most reliably [3,4]. One of them—the correla-
tion dimension D,, sometimes denoted by v—was pro-
posed earlier than most others, and its definition is a bit
simpler. Here we shall restrict ourselves to v, but gen-
eralization can be made for any other D,.

All the necessary definitions can be found, e.g., in
[3,5-8,18]; here we shall use the one most close to practi-
cal estimation of v from a set of N vectors. It may be
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both original vectors x€A or reconstructed vectors z,
but first we shall consider only x. Let us denote the num-
ber of attractor points x; within the € ball centered at x;
by k;(e). Then the probability that an attractor point
would fall into this ball (the measure of the ball) can be
approximated by P;(€,N)=k,;(¢)/N. This probability
averaged on the attractor is called the correlation integral
and can be approximated by C(e,N)=N '3, P,(¢,N) [in
fact, C(€,N) is just the ratio of the number of pairs of
points with the distance ||x; —x |l <€ to the total number
of pairs]. If we denote the mean number of e neighbors
of a point by k(e)=3k;(€)/N, then C(e)=k(e)/N.
[Below we shall omit the argument N for C (e).] The
definition of the correlation exponent v is based upon the
scaling properties of this averaged probability,

v=lim{In[ lim C(e)]/Ine} , (2)
€—0 N— o

that is, for € small C (€) scales as €".

In practice N is always finite and both limits e—0 and
N— o in (2) become senseless. The usual way to esti-
mate v from a finite set of vectors is to find scaling for €
“not too small,” and for this purpose a linear dependence
of InC (€) vs Ine is searched for, the slope of correspond-
ing graph being taken as a v estimate. On this log-log
plot as a rule there are three characteristic scales: (1) the
size of the attractor €;=max|x; —x,|| [for e>eg,
C(e)=1] (global scale); (2) the upper end of the linear
part €z, where the fractal scaling begins with “good accu-
racy” (fractality scale). Usually the loss of linearity for
€>€p is considered as an influence of attractor edges
[3,8], where the number of € neighbors is less than in the
“middle” of the attractor; (3) the lower end of the linear
part €y, below which the structure of the attractor
remains unresolved (unresolved structure scale).

Our experiments and the InC(e) plots published by
other authors enable one to conclude that the value of €,
is characteristic of a specific dynamical system and the
geometry of its attractor. Experiments show that for
many known systems € is rather big and ~0.1e; (e.g.,
for the Lorenz model).

The accuracy of dimension measurements essentially
depends on the length of linear part, ie., [/=Inp,
p=¢€rp/€y. Experts (see [3,8—10] and references therein)
suppose that p cannot be less than p,;,=2-3 (for reliable
results p must be =~ 10), and propose the estimates of the
minimal number of data points for the correct determina-
tion of v. The heuristic arguments differ slightly from pa-
per to paper, but all of them are based upon some as-
sumptions about “homogeneity” of attractor. Real at-
tractors almost never are homogeneous, but nonetheless
these estimates are useful and give at least an qualitative
picture of the situation. They can be set as follows.

There are three important characteristics of a data set:
total observation time T, the number of data points N,
and the sampling rate Az. They are related by the equali-
ty T, =NAt. They must be considered together, be-
cause one of them is not enough: large T, with small N
may be as bad as small T, with large N.

The possibility of studying attractor properties from

data about only one trajectory is based upon the well-
known property of chaotic attractors: a trajectory begin-
ning in a point X will for some time wander along the at-
tractor, but after time interval T it will return into the €
neighborhood of X [6-8]. The less € is, the more Tx
must be. For the same €, T, is usually different for
different attractor points, but nonetheless some mean
value can be introduced. To measure v, for €E[ey,ex]
the attractor points must have enough € neighbors; it is
clear that the dimension v cannot be obtained if the num-
ber of neighbors is less than v. For different points the
number of € neighbors is different, but it is natural to sup-
pose that €y corresponds to the situation when on aver-
age an attractor point would have about one neighbor
within the €, ball (or box), i.e., when k (€;;)=1. The cor-
responding T, must be such that for most points the
trajectory will return into their €, neighborhood 1-2
times. Thus, if we cover the attractor A by €, boxes
(their number we shall denote by M), most cubes will be
visited by the trajectory 1-2 times.

For the given T, there is an optimal number of data
points which is close to M (it is necessary to have 1-2
points in every box). Because the speed [x| varies along
the trajectory, for homogeneous ¢; ordering the density of
x; will not be homogeneous, but we shall neglect it. If
N <<M, the scale resolution will be limited by N instead
of Ty, and in case of N >>M on small scales € < €y the
algorithm will measure the dimension of trajectory rather
than attractor, unless special precautions are taken [3].

Consequently, to resolve the scale €, we need N =M,
which corresponds to the optimal sampling rate Az. The
total length of the trajectory corresponding to the value
of T, must be close to M€y, and taking the mean speed
v =(|x|) we get an estimate At ~e, /{|x|). Below it is
supposed that the sampling rate At is close to the op-
timal, and thus all estimates of N and T, are equivalent.

M can be roughly estimated as a ratio of v-dimensional
volume of the attractor ¥V, to that in one box (e}):
M=V, /€;. The minimal N corresponds to the minimal
possible value of p_;.: €y =€r/ppin, SO

Noin=V,/€=(V, /€5 )ptin - (3)

If we denote Ny=V, /€}., which is nothing but the num-
ber of €, cubes needed to cover the attractor, we have

Nmin :Nop;ﬂn . 4)

It is clear that on average a point will have N/No=k(ep)
€r neighbors and thus C(ez)=N, .

Note that the estimate (4) is based upon the assumption
that k(ey)=1, and thus C(ey)=N"!. Experiments
show that sometimes the linear part extends to smaller €
values, where k (€;;) <<1. Usually variations of slope for
these € become rather large and the corresponding v esti-
mate may not be reliable. But sometimes it is possible to
use this € interval, and there are different approaches for
estimating N, that take it into account. For example,
Eckmann and Ruelle [10] propose the estimate based
upon the assumption that the InC plot is linear down to
minimal possible €, where C(e)=N !, k (e)=N~1,
which gives
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Niin > NoPmin - (5)

Estimates such as (4) are said to be valid for algorithms of
calculations of Lyapunov exponents. Certainly, there
may be intermediate estimates between (4) and (5). In
what follows we shall restrict ourselves to (4), but the
main results will hold in case of any such N, estimate.

III. QUALITY OF A DELAY RECONSTRUCTION

The properties of delay reconstructions were studied in
several papers. For example, in [11] it was characterized
by homogeneity of measure on attractor, and from this
criterion the method of time delay choice based upon mu-
tual information was proposed. Later, the redundancy
criterion for the choice of m was proposed on this basis
(we must add new dimensions until this gives us new in-
formation) [12].

But the estimates of N ;, give a new tool for evaluating
the quality of reconstruction. It is well known that a bad
choice of reconstruction parameters results in geometri-
cal distortions of the reconstructed set. For example, too
small 7 makes the A ; points concentrate near the diago-
nal z={1,1,...,1}, yielding an underestimated v value;
too big 7 also may create problems.

The two factors in the estimate (4) have an obvious
sense. The second is responsible for the processing of the
fractal structure, and cannot change for any reconstruc-
tion, while the first one corresponds to the amount of
“efforts” that are necessary to reach the fractality level.
The more complex the global structure of an attractor is,
the greater the prefactor N, will be, and thus it may be
used as a quality measure.

Below we try to analyze quantitatively how “bad” or
“good” a reconstruction is by comparing the minimal
number of points required to obtain a correct result in
original x space Np;,(x) and reconstructed z space
N in(z). Our main result is that for chaotic systems with
“too big” chaoticity (entropy) or too wide spectrum a de-
lay reconstruction may be impractical even for optimal 7
or w; in any case N (z)>>N_. (x). If the measured
time series data has low precision, then a delay recon-
struction may be totally inapplicable, no matter what N
or 7 is chosen.

IV. EXAMPLE OF PROBLEMS WITH DELAY
RECONSTRUCTION: ATTRACTOR
OF CONVECTIVE FLOW

We encountered the problems with applying delay
reconstructions during processing the numerical data ob-
tained by Rodichev in modeling convection in a plane
horizontal fluid layer heated from below and rotating
about the vertical axis Oz with the angular velocity o [13].
The set of equations describing it in the dimensionless
form is

ov

SV (V-V)V=—Vp+PrAV+PrRaTk+Tak XV ,
%HV-V)T:ATHV-]() :
divv =0 .

Here V is the fluid velocity, T is the temperature devia-
tion, k is the unit vector of the z axis and Pr, Ra, and Ta,
are Prandtl, Rayleigh, and Taylor numbers, respectively.
The boundary conditions for z=0 and z=1 were
T'=V,=0dV,/3z=43V¥,/0z=0, and the solutions period-
ic in x and y were searched for. The solution was
represented in the form

L
Q:(t,x,y,z)= Ayt (8) sin(B; +nwz)
=1

h,m
Xsin(y;mmax +wla,y) .

Here Q; for i =1,2,3,4 stands for the three components
of V and T, and B;=p,=v;=y,=0, B=B,=7v;
=y4=m/2. With the help of the Galerkin method the
system of differential equations was obtained, which was
integrated numerically. For the case described below
L =2 and the total number of Fourier modes used was
23: 7 for T and 6, 6, and 4 for x, y, and z components of
V, respectively.

The purpose of the computations was the study of
transition to turbulence at small Prandtl numbers. The
values of the parameters were Pr=0.025, Ta=230, while
Rayleigh number Ra was the bifurcation parameter. At
Ra=Ra‘’=800 the stationary solution V=0, T =0 loses
stability and convective rolls appear, which correspond
to four nonzero fixed points in the system of ordinary
differential equations (ODE’s). For larger Ra a limiting
cycle arose, and then a 2-torus. In the example below Ra
was chosen slightly above the point of 2-torus collapse,
Ra/Ra®=1.6; thus the chaotic regime that arose was not
expected to be too complex, despite the fact that the at-
tractor “exploded” away from the preexisting torus.

Here we shall not discuss the physical relevance of the
results. It will be enough to say that the processed time
series was generated by a 23-dimensional dynamical sys-
tem, and Rodichev supplied us with the recorded values
of all 23 variables with the step Az =0.125 (the time step
of numerical integration was smaller to provide accuracy
~107% and the data array contained =~55000 23-
vectors. The examples of time history and power spec-
trum for one of the temperature components T, are
shown in Fig. 1. The sampling rate seems to be enough
to describe all main features of the process.

Some typical results of dimension measurements for
N =20000 are shown in Figs. 2(a) and 2(b). It is seen
that the slope at the most linear part of the log-log plot
increases as the window length w =(m — 1)7 grows, and
eventually reaches values ~8-10, which seems to be im-
probable in this case. There were two conjectures about
the cause of this phenomenon: “noise” of some nature in
the numerical data or quality of delay reconstructions.
To verify them we repeated the dimension measurements
in x space using all 23 modes and avoiding delay recon-
struction. The result is shown in Fig. 2(c) and yields the
dimension estimate close to 5.

It is known that in a case of spectrum like in Fig. 1(b)
there may be problems with dimension measurements [3]
because the observation time may prove to be too small
to resolve slow modes. Indeed, v estimated from 10000
sample points (7T ,=1250) was =4.3. But for
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Tops=2500 and T, ,=7500 (20000 points with
At =0.375) the estimate in x space was close to 5.0-5.2.
Hence, the amount of data seemed to be enough to
determine v in x space and probably insufficient to do it
with delay reconstruction. So, we made the estimates of

N i, for different w.
V. RECONSTRUCTION FOR LARGE w

For large values of m, and hence w, the dependence of
correlation integral C on the reconstruction parameters
m and 7 was studied in [14,15] with the purpose of
measuring the generalized entropy K,. The following re-
lation was obtained:

InC(e,m,7)=a+vIne—K,w , a=const, (6)

for € small and w =(m — 1) large enough (e.g., because
m must be greater than v and a trajectory during time w
must visit a certain minimal number of € partition boxes).

Let us denote € for x and z space by €,(x) and €;(z),
respectively. Because InC (e, )= —InN both in x and z
space, we have for e=¢€,

vine,(z)=—InN —a +K,w ,
viney(x)=—InN —b ,

or
viney(z)=>b —a +vney(x)+K,w ,

that is, €;;(z) grows exponentially as
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FIG. 1. The examples of (a) time history and (b) power spec-
trum for the numerical data from convection modeling (Fourier
mode T]Q] ).

ey(z)~ey(x)exp(K,w /v) . (7

As for €, as well as €, our experiments for the Lorenz
model and the Henon mapping [16] and the results from
other papers (e.g., see figures in [15]) show that it remains
almost the same for all reconstructions provided w is
large enough [i.e., €p(z)=ep(x)]. In fact, €z(z) and
€;(z) grow as =m /2, which can be neglected in compar-
ison with exponential growth of €.
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FIG. 2. The results of application of dimension algorithm to
convection data. (a) Typical examples of logC-vs-loge plots; pa-
rameters: m =20 and 30 for every 7=0.125, 0.625, 1.25, 3.75.
(b) Dependence of slope vs w for the same 7 values; for every 7,
m takes 35 values from 6 to 40. (c) Calculations in x space using
11, 17, and 23 modes, respectively. The dimension value is es-
timated as v~5 (the slope of the dashed line). In all cases
At =0.25 and N =20 000.
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From (4) we can relate €;(x) with n as
€y(x)=€p(X)(Ny/N)/V=€p(z)(Ny/N)'" .
Substituting it into (7) we get
€y(z)~€p(z)(Ny/N)" exp(K,w /v)
or
N=Nylep(z)/ey(z)]" exp(K,w)
and thus the minimal N for the z space is
N in(2) = Noploin €Xp(K30) = N i (x) exp(K,w) . (8)

As we suppose that the sampling rate At is optimal, the
same holds for the observation times,

T ops(z) =T (x) exp(K,w) . 9)

This effect has the following consequence: when the true
interval of linearity [Ilne€y,lneg] becomes too small or
vanishes, one may search for linearity on the interval
[Ineg,Ines ], its length remaining almost constant. The
slope & of the InC plot on this interval must grow with w
as

$~S,+K,w/(Ineg—Iney) . (10)

In fact, it is very probable that in cases of too small data
samples the estimated value relates to the attractor’s en-
tropy rather than dimension (see also [17]).

All that has been said is shown in Fig. 3 for the Lorenz
attractor (Pr=10, r =28, b=2). For w > 6 the remnants
of the linear part [log,ey,log,ep] are situated in the
domain where k(€) <1. Here the largest Lyapunov ex-
ponent A=0.9, and K, is most probably close to it.

The growth of €,(z) can be explained from dynamical
arguments. If we consider a pair of close points x; and
x,, the distance between them grows with time:
|Ax(2)| =~|Ax(0)| exp(ut). As w grows, so does the dis-
tance between reconstructed vectors z; and z;:
|Az(t,w)| =|Ax(t)| exp(uw). The concrete u value may
change from point to point, but on average there must be

Log,C

-1

J Y 4
LI N A e e
- 4

0 4
Log,e

FIG. 3. Examples of correlation integral plots for the Lorenz
attractor. The parameters of reconstruction are m =4 and 20
for 7=0.1; m =6,16,20 for 7=0.2; and m =12,16,20 for 7=0.5,
respectively. Ar=0.1, N =10000.

exponential growth of ey(z)=ey(x)exp(Mw). Most
probably, M must not exceed A (after the largest
Lyapunov exponent), and our experiments show that for
moderate w M may be close to A. More detailed con-
sideration for larger w must give the value M =K /v.
Increasing N, we can diminish €;(x) and compensate
growth of €;(z). But if the measured data are superim-
posed by noise of amplitude &, then it is useless to make
€y(x) <8 (unless one wants to determine & itself). Thus
the compensation capabilities are limited by &, and if
€y(z) grows more than €5 /8 times then the compensa-
tion is impossible. Hence, for large w the structure of the
attractor would be hidden by noise, so there is the natural
limit for w: K,w <vIn(eg/8). If this inequality cannot
be satisfied, the delay reconstruction will be inapplicable.

VI. RECONSTRUCTION FOR SMALL w

It may seem that it is better to use small w values keep-
ing T, the same. But if w becomes significantly less
than some characteristic time w,, the dimension mea-
surement also requires T, >> T, (x) due to geometrical
distortions caused by reconstruction— ‘““‘condensation”
near the diagonal {1,1,...,1}.

Let us suppose that x (¢) is a smooth function and let
w, be maximal for which the set of inequalities

max,[(wy/2)¥|x®(t)| /k11<x, , k=0,1,...,m

holds, where x , =max,|x (t)—(x )| is the “amplitude”
of x(#). For example, if x(¢t)=cos(wt), then
wo=2/w=T /m, for the Lorenz attractor (parameters as
in Fig. 3) wy=0.27. Below we shall consider the case
w <wy.

The set of variables {x, (1)},

Xe (1) =(wy /2)x ®1) sk 1, 11

usually can be considered as an alternative representation
for a dynamical system. For example, for the Lorenz sys-
tem

X1=%X , X>2=(wy/2)Pr(y —x),
X3=(wo/2)*Pr[(Pr+r —z)x —(Pr+1)p]/2 .

At least in some cases this representation proves to be as
good as the original x representation [16].

Let us introduce the set of linearly independent vec-
tors, which may be considered as the values of u¥,
k=0,1,...,m —1, u €[ —1,1], taken at m points on the
grid with the step 2 =2/(m —1):

22:{1,1,1,...,1} N
Z,={—1,(—=1+h),(—1+2h),.. .1},
Zy={1L,(—1+h2(—1+2h),.. 1},

Z,={(—D)" " (=1+m)" " (—14+20)" 1.

m

Orthonormalization of {Z;} gives an orthonormal basis
{vi} in z space, and the components of v, for m large



48 LIMITATIONS OF DELAY RECONSTRUCTION FOR CHAOTIC. .. 909

enough would be close to the values of the Legendre po-
lynomials P, _,(u) in the corresponding grid points. In
this basis the z vector will have the components

zk(t)=(vk,z(t))=2x(ti Wi
=¥ x(ttu,w/2)P, _(u;) .

For large m this sum can be approximated by the integral

zk(t)%fllx(t+uw/2)Pk_1(u)du . (12)

Using the formula

n

P,,(u)=A,,—:—n[(u2—1)"] , A, =n+H1"2/2m1)
X

and integrating (12) £ — 1 times by parts we obtain
zi()=(w/2)* 14, _,
X f_ll(l——uz)kflx(kfl)(t +uw /2)du
=95 Wwy/2)k 14, _x k(%)
X f_ll(l—uz)k_ldu
=97 IBx (%), (13)

where 3=w /wg,, B, =0(1), t*€[t —w/2,t +w /2], and
for w small Y, (¢*) =), (2).

Thus the delay reconstruction Az can be considered
as an affine transformation of the attractor in y represen-
taktion, its size in the direction v, being multiplied by
ok~

If we suppose that the x and Y representations are
equivalent and give similar estimates for N, attractor
volume, etc., then estimates for z reconstruction also can
be made. The transformation of “v-dimensional volume”
V, would be

v(z)=V,(x) [I %=V, (x)9*, a=viv—1)/2.
k(Sv—1)

(14)

But the minimal scale to be resolved diminishes even

more because the small-w reconstruction decreases e€p.

Indeed, if in original representations the size of A in all

directions was =€, and the influence of edges saturated

for all directions on the same scale €;(x), then the small-

est attractor size would be ~¢"~ ! times less and

er(z)=ep(x)6”"!. The €, must be =~p,;, times less, and
the v-dimensional volume per € cube is

€y(2) = €p(2)ppin=€p(X)"Ppind”" "
=ey(x)3V V=g, (x)9% . (15)
Thus for w <w, we get the following estimate:
Nopin(Z) =N (X)(w /wo) ™%, a=v(v—1)/2  (16)
and

T ope(2) = Tops(X)(w /w0) ™% a7

If the x representation is worse than the x representation,
this estimate may be even worse.

For €> €y the slope of the InC plot would usually be
less than v. If ¢ is very small, then the dimensions on the
InC plot wold “turn on” sequentially. For €5 <e<eg
the attractor looks one-dimensional (1D), for
19266 < e<d€g, 2D, and so on, until €z has been reached.
If N is too small, € may never be reached, and v will be
underestimated.

Consequently, w cannot be much less than w,, espe-
cially for high-dimensional attractors; otherwise v will be
seriously underestimated. If the data are superimposed
by noise with amplitude & and (w /w,)* ! <8, the correct
reconstruction again will be impossible for any N and
Tobs'

VII. PROPERTIES OF RECONSTRUCTIONS
AND FOURIER BASIS

The results of the preceding section can be interpreted
from the point of view of spectral analysis if we use
another natural orthonormal basis instead of P, (u):
Vilu,)=explimku,), n,k=0,...,m —1. The projections
of z(t) onto y, are

()= (z(1)-yy)
Ef_llxu_““’/2)exp(i#ku)a’u : (18)

This convolution works as a bandpass filter. Applying
Fourier transform, we obtain

Z (0)=X(0)S (@), (19)
where
sk<w>=fjlexp[i(wk — 0w /2)u)du
=2sin(ow /2—7k) /(0w /2—1k) .

Thus the kth component of z is formed mainly from the
frequency band [#(k —1)/w, w(k +1)/w] with the half
width wp=w/w. For w small the bands become very
wide and 1-2 of them may cover the essential part of the
spectrum X (w). If the latter is concentrated within the
limits wy=m/w, (no processes faster than w,) and
w <wy, then the signal is projected only onto the first
component, others being very small. But for correct
reconstruction of the attractor we need from v to 2v+1
different components, so we will have to use that with
small amplitudes and to resolve very small scales, which
requires large T,,. In the presence of noise the small-
amplitude projections will be formed mainly by it, and
correct reconstruction becomes impossible.

VIII. APPLICABILITY OF DELAY RECONSTRUCTION

Combining (9) and (17) we get
T ops(Z) = T o (X)[ (W /w() ™ *+exp(K,w)] . (20)

This function must have a minimum near w, and 1/K,,
which corresponds to the best w choice. If K,wy=1,
then a good delay reconstruction can be obtained, which
is true, e.g., for the Lorenz attractor (K,w,==0.3) and
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some other low-dimensional chaotic systems.

The relation (18) is good when there is one characteris-
tic time w,, i.e., spectrum is ‘“concentrated” near
wy=2/w,. But when slow processes with characteristic
time w, >>w, substantially contribute to the attractor di-
mension [for example, if x(8)=xq(t/wy)+x,(t/w)],
the dependence of minimal T (z) on w may be more
complex. It follows from the previous sections that for
w; >>w >>w, the components associated with x, will be
reconstructed satisfactory, while those associated with x;
will contribute noticeably only to 1-2 z projections.
Thus, until w <<w,, the delay reconstruction would
cause distortions and require 7, (z)>>T,(x), but not
so large as for w <w, [this intermediate region could
probably be effectively described by a relation of the form
Too=3,(w/w,) *]. If Kyw, >>1, then for w <2/K,
the small-w distortions will be large, and when they be-
come small for w=w),; the chaoticity causes large-w dis-
tortions of another nature. Thus 7' ((z) must always be
significantly greater than T, (x), even for optimal w. It
is possible, that there are some modifications of the delay
reconstruction (1) that enable one to avoid such effects,
but it is a separate problem which is beyond the frame of
the present paper.

What would be observed had we possessed a time series
with T less than necessary for a correct delay recon-
struction? If we increase w, then for small w the slope of
the logC-vs-loge plot will grow because the slower and
slower processes will “revive” and contribute to the cal-
culated dimension. For w >1/K, the slope will increase
due to chaoticity. Thus we observe the permanent di-
mension increase, as shown in Fig. 2(b). To check this
conjecture we have processed the time series

x (1)=x(t)+sin(w;t)+sin(w,t) ,
(21)

0 =2m/(4X2V%) | 0,=27/(16X3"%) | v=4.06,

where x; (t) is the x variable for the Lorenz system, nor-
malized such that max|x,_(t)| =1. We processed a time
series with N =10000, At =0.1. The results in Fig. 4
resemble that of Fig. 2(b). At the same time calculations
in x space give the definite estimate v=4.01, which is not
bad for this N.

: ;
AL L e B e LI i o u=)

W

FIG. 4 The slope of the logC plot for the model system (21).
7 takes 10 values from 0.10 to 1.0, and for every T,
m =6,8,10,15,20. Ar=0.10, N =10000,

IX. ESTIMATE OF K, FROM ¢,

The dependence of €;; on w has not only negative sides,
it may serve as a source of information about chaotic
properties of a dynamical system, such as InC(e,w) for €
fixed does [14,15]. We tried to analyze this information
for several systems described above. For the rigorous
definition of €, for this purpose we used the relation
C(ey)=1/N. The plots of log,e,, vs w for the Lorenz at-
tractor (cf. Fig. 3), experimental series (22) (cf. Fig. 4),
and the convection computations [cf. Figs. 2(a) and 2(b)]
are shown in Figs. 5(a)-5(c), respectively.

In Fig. 5(a) it is clearly seen that for w <1 the slope of
the plot (transformed from bits/sec to natural logarithms)
gives the value u~ 1, which is close to the value of largest
Lyapunov exponent A (the solid line with larger slope),
and for larger w the slope gives the value close to 0.5,
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FIG. 5. The dependence of log,e;, on w for (a) Lorenz sys-
tem, the slopes of the solid lines s; =A/log2, s, =A/(v1og2); (b)
the model system (21), s, =A/log2, s, =A/(vlog2); (c) convec-
tion data, s;=(0.15/log2), 5,=(0.26/log2)/5.2. The conjec-
tured values A=0.15, K, =~0.26.
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which is in good agreement with the ratio A /v=K, /v
(another solid line).

In Fig. 5(b) there are similar w intervals, but here for
very small w < ~0.5 the quick growth is observed, which
most probably is connected with the small-w distortions
(Sec. 1V), and for very large w the loge, plot saturates
close to the value of logey.

Figure 5(c) resembles 5(b), but here the two different
linear parts can be seen more distinctly. Comparing Figs.
5(a) and 5(c), we may suppose that the slope of the first
one corresponds to A, and of the second to K, /v; then,
using v=5.2, we obtain A=0.15 and K, =0.26. This can
be interpreted as the presence of at least two positive
Lyapunov exponents close to 0.1-0.2. On the other
hand, it seems unlikely that there are more than two posi-
tive exponents.

We applied the method of Wolf er al. [19] to determine
the largest Lyapunov exponent for the convection data.
The obtained value was A=0.15+0.03.

Thus, summarizing the results about convection nu-
merical data, we can conclude that (a) the system is
chaotic; (b) the dimension of its attractor is between 4
and 6, and most likely v~35; and (c) the system possesses
two positive Lyapunov exponents, their values being
close to 0.15; the entropy K, ~0.26.

X. CONCLUSIONS

First we must note that all the estimates of N or T
given here depend only on w. More accurate ones may
(and for m small must) depend on m and 7 separately, but
the qualitative behavior is essential, which is in good
agreement with our experiments.

All estimates for small w were done under the assump-
tion that the attractor geometry in x space is optimal for
processing. But obviously there may be situations when
in x space the attractor is organized in a complex
manner, and delay reconstruction creates ‘‘counterdistor-
tions,” which improves the situation. But it is doubtful
that such situations occur frequently.

Thus we can conclude that for chaotic systems with
rather broad spectra the delay method of attractor recon-
struction may turn out to be impractical as requiring too
many data. The fluid turbulence is a good candidate for

it. To study it by methods of dynamical systems theory it
may be better to use reconstructions that are closer to the
original x representation, i.e., to measure several different
observables simultaneously and to form reconstructed
vectors from all of them for the same ¢ or in several mo-
ments of time. The possibility of such reconstructions is
well known; we want to point out their potential practical
importance.

Here we must say that there may be two kinds of prob-
lems with application of dynamical-systems methods to
numerical data. (i) One has limited T, (due to the
feature of natural experiment or in case of very expensive
computations), but one wants to obtain maximal informa-
tion. Then it is necessary to measure several observables
and to use the original phase space. (ii) One has practi-
cally unlimited observational capabilities, and is limited
only by the speed of the data processing algorithm. Then
delay reconstruction may be used, because there are the
highly accelerated box-assisted algorithms that enable
one to exclude the large-scale structure of the attractor
and process only small scales € <€y (see [20] and refer-
ences therein).

The main points of this paper can be summarized as
follows:

(1) For chaotic systems with broadband spectrum the
delay reconstruction may require much more data than
processing in original phase space. In any case one must
have a very large amount of numerical data. This situa-
tion very likely occurs in the case of hydrodynamic tur-
bulence.

(2) If data are superimposed by noise, there are situa-
tions when a delay reconstruction may be inapplicable for
any time series length N.

(3) When the slope of logC plot grows as the embed-
ding dimension increases, this effect may not be due to
the presence of noise. It may mean that the observation
time is too small.
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